IV B.Tech - I Semester – Regular Examinations - DECEMBER 2023

ALTERNATIVE SOURCES OF ENERGY (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks		
	UNIT-I						
1	a)	Explain the following with respect to Solar radiation Geometry:i) Solar Altitude; ii) Zenith angle;iii) Solar Azimuth angle.	L2	CO2	6M		
	b)	List the advantages and disadvantages of concentrating collectors over Flat-plate collectors.	L2	CO2	8M		
OR							
2	a)	Differentiate between extraterrestrial and terrestrial solar radiation.	L2	CO2	6M		
	b)	Draw the schematic and give functional description of cylindrical parabolic collector.	L2	CO2	8M		
	UNIT-II						
3	a)	With a neat sketch explain the working of VAWT, and illustrate the functions of its main Components.	L2	CO3	7M		

	b)	Explain the process of production of biogas							
		from biomass. What are the main							
		advantages of anaerobic digestion of	L2	CO3	7M				
		biomass?							
	OR								
4	a)	Derive the expression for maximum wind	L3	CO3	7M				
		power extracted by a wind turbine.	23	005	/ 1/1				
	b)	What are the different factors which affect	тэ	CO^{2}	714				
		the size of the bio gas plants?	L2	CO3	7M				
		UNIT-III							
5	a)	Explain the various technologies of	L2	CO3	7M				
		harnessing the geothermal energy.	L	COS	/ 1 V1				
	b)	What is a tidal power plant and what factors	L2	CO3	7M				
		are considered in order to install it?	L2	COS	/ 1 V1				
	OR								
6	a)	Describe various advantages and	1.2	CO^2	714				
		disadvantages of geothermal energy forms.	L2	CO3	7M				
	b)	Describe in detail the operation of double	10	002					
		basin type tidal power plant.	L2	CO3	7M				
		•							
		UNIT-IV							
7	a)	Write a technical note on polarization in	тэ	CO4	714				
		fuel cells.	L2	C04	7M				
	b)	Explain the operation of Redox fuel cell	L2	CO4	7M				
		(RFC) with neat sketch.			/ 1 VI				
OR									
8	a)	Explain the thermo dynamic aspects of fuel	L2		7N/I				
		cell.		CO4	7M				

	b)	Explain the operation of proton-exchange membrane fuel cell (PEMFC) with a neat diagram.	L2	CO4	7M			
	UNIT-V							
9	a)	Explain working principle of direct energy conversions and its limitations.	L2	CO4	7M			
	b)	Explain the construction and working of MHD generator.	L2	CO4	7M			
	OR							
10	a)	Write a short note on: i) hall effect ii) Faraday's laws.	L2	CO4	7M			
	b)	Explain the working of Thermo Electric Generator.	L2	CO4	7M			